Accelerating Green Hydrogen Production with Advanced Membrane Design

HYDROGEN

Dr. Simon Cleghorn

Senior Product Specialist W. L. Gore & Associates

Together, improving life

Agenda: Three Pathways to Progress

Identifying — and overcoming — the challenges for green hydrogen production.

PEM Electrolysis is a viable production pathway to achieving decarbonization targets.

PEM systems must become more efficient to make hydrogen

PEM systems need to scale up quickly to meet growing demand (requiring a reliable, sophisticated supply chain)

For individual components to work in complex systems, we need collective experience, expertise – and collaboration.

PEM SYSTEMS MUST BECOME MORE **EFFICIENT** TO MAKE HYDROGEN MORE AFFORDABLE.

Reducing OPEX is key to delivering results CAPEX is important. OPEX is **critical**.

CAPEX via:

- integration cost.

To scale up to meet net-zero demands, OPEX is the deciding factor in delivering a lower levelized cost of hydrogen.

Massive industry scale-up will enable lower

Increased plant size & economies of scale.

Optimized electrolyzer design & plant

Tackling technology trade-offs to reduce OPEX

Why compromise – when you can optimize?

- Engineers typically face the 'system' dilemma' of **optimizing performance**, safety and durability.
- Optimizing for 1 criteria has meant compromising on the others... until now.
- Gore has developed an advanced PEM that can optimize them all – at the same time.

SAFETY (e.g. hydrogen gas crossover)

PERFORMANCE

(e.g. voltage efficiency, proton conductance)

DURABILITY (e.g. chemical/mechanical stability)

Increased performance with Gore's PEM

Increasing voltage efficiency enables higher H₂ output for the same energy consumption (or vice versa; less energy consumption for the same H₂ output)

Gore's PEM M275.80 offers ~5% greater cell voltage efficiencies over other PEM while meeting safety & durability requirements.

This reduces the amount of electricity **required** to produce 1 kg of Hydrogen.

A more efficient PEM enables a **smaller stack** and a higher production of H₂. Small stacks are important where space is premium/key.

How does Gore's PEM improve safety & durability?

Applying our materials science expertise to enable reliable and long-lasting WE systems.

- Gore's additive technology enables <2% hydrogen in oxygen concentrations over a wide operating range - even at low current densities.
- Wider Operation Range following load cycles results in longer uptime while staying below safety limits.

- continuous operation.

• This extends WE system durability and reduces service intervals for

• Higher mechanical durability enables long-life WE systems and reduces maintenance for longer system uptimes.

Demonstrating our PEM durability with (•) **ITM** POWER

Durability testing of Gore's PEM M275.80.

Undertaken at ITM's state-of-the-art test

Test performed under high current conditions (3.3 A/cm^2) to maximize hydrogen production.

Cell operation >9,000 hours (and ongoing).

Test demonstrates excellent membrane durability and <1% voltage **degradation** (over the 9,000 hours test duration)

Achieving better efficiency and LCOH with Gore's PEM

Electrolyzer simulation for off-shore wind park

- Wind Park: 200 MW
- Electrolyser: 100 MW
- H₂ output @ 30 bar
- Off-shore typical load profile
- FLH: ~5,600 hrs.

 Highest system efficiency is enabled with Gore PEM M275.80 – not only at nominal power but also in part load.

4.76 €/kg H₂ 4.52 €/kg H₂

10%	10%	
8%	8%	
82%	82%	
MARKET PEM	GORE PEM M275.80	

- System efficiency is crucial electricity expenditures account for over 80% of the LCOH
- Gore membrane demonstrates clear LCOH advantage over Market PEM

Breaking performance barriers with Gore's high-performance PEM

Reducing system trade-offs with our advanced membrane technology.

Ionomer

• High proton conductivity + high voltage efficiency for increased performance

Additives

• Greater chemical durability + reduced H₂ crossover for increased durability and safety

Reinforced Layer

• Enabling thin, highly conductive, mechanically + chemically durable membranes for **increased** durability and performance

Additives

Ionomer

Reinforced Layer

PEM SYSTEMS NEED TO SCALE UP QUICKLY TO MEET GROWING DEMAND, REQUIRING A RELIABLE, SOPHISTICATED SUPPLY CHAIN.

Next decade will see significant Green H₂ growth. Global water electrolyzer manufacturing has to scale to meet market demand

- Rate of market growth is uncertain
- As a critical component supplier Gore is uniquely positioned in the value chain
- Gore is investing to develop our own market perspective to ensure we are ready to meet future demand

Applying our fuel cell expertise to water electrolysis Overcoming challenges and reducing risks in an uncertain environment.

Gore's established enterprise resources are set up to support Multi-Gigawatt installations TODAY.

FOR INDIVIDUAL COMPONENTS TO WORK IN COMPLEX SYSTEMS, WE NEED COLLECTIVE EXPERIENCE, EXPERTISE – AND COLLABORATION.

Even an advanced membrane can't do it alone ...

- A new and complex technology presents new and complex challenges.
- Different stakeholders in the supply chain may have competing requirements.
- The solution? **Collaboration**.

Interdependent components require orchestration. Our collective expertise and experience can solve component integration challenges!

End Use

 H_2 Plan Owners & Operators

Creating the clean energy future – together.

- We have developed a "multi-use" membrane for broad application in Water Electrolysis ...
- ... and with the right partners, we can develop tailored WE membranes for different systems + requirements.

WE OFFER

- 1. 25 years' membrane technology & electrochemical expertise
- 2. Global analytical capabilities and prototyping facilities
- 3. Proven, reliable and secure supply

WE'RE LOOKING TO

- and product roadmaps

1. Expand our fundamental understanding on PEM fitness-for-use in Water Electrolysis systems

2. Increase our technical insights on system performance and component interactions

3. Align on future development vectors

In Summary - We can achieve our carbon targets - if we collaborate

HYDROGEN

EFFICIENCY. SCALABILITY. SYSTEM INTEGRATION.

- durable PEM.
- collaboration.
- proven supply security.

✓ WE systems must become more **efficient** to make hydrogen more affordable - enabled through Gore's highly conductive and

 \checkmark For individual components to work in complex systems, we need collective experience and expertise – enabled by effective

✓ WE PEM systems need to scale up quickly to meet growing demand – enabled through Gore's already established high volume capacity and

LET'S NOT WAIT TO CREATE A CLEAN ENERGY FUTURE. PEM TECHNOLOGY IS **AVAILABLE AT SCALE TODAY**.

DOWNLOAD YOUR DIGITAL COPY.

Simply scan the QR code to access this presentation online.

THANK YOU.

<u>Contact our Clean Energy team</u> to learn more about the new GORE® PEM for Water Electrolysis. <u>gore.com/alt-energy</u>

Together, improving life

